Possible Timeline for STAR Spin Program

RHIC RUN	NEW EQUIPMENT TO	STAR/RHIC SPIN
<u>YEAR</u>	BE COMMISSIONED	<u>MEASUREMENTS</u>
FY04	New AGS warm snake; H gas jet; rf spin flipper; BEMC preshower; EEMC SMD + preshower; completed FPD	Test \mathcal{L} improvement schemes; calibrate P_{beam} to 10%; continue A_{LL} (jets)
FY05	New strong AGS cold snake; Completed BEMC, EEMC (incl. postshower); forward hadron calorim't'r?	Calibrate P_{beam} to 5%; improve \mathcal{L} ; Collins frag. with forward p^{0} 's; more A_{LL} (jets); first look at g^{+} jet
FY06+07	Whatever is needed to achieve full design £ and P _{beam} ; ö s = 500 GeV pol'd collisions; STAR TOF barrel	A _{LL} (g + jet), transversity measurements at mid- rapidity, at Ü s = 200 GeV
FY08+09	Improved STAR forward tracker (1<1-2)	$A_{LL}(g+jet), A_{L}(W^{\pm})$ at \ddot{o} s = 500 GeV


S. Vigdor, Spin Physics from STAR

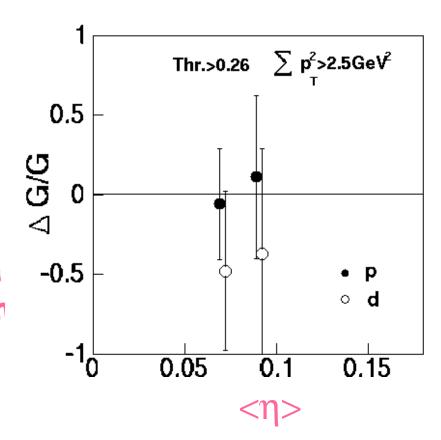
4th Circum-Pan-Pacific Symposium on High Energy Spin Physics, Seattle (8/2003)

Inclusive jet production

· A_{LL} sensitivity (incl. detector effects)

- Simulation based on Pythia including trigger and and jet reconstruction efficiencies
- Assume: Coverage of EMC (barrel) $\Rightarrow 0 < \Phi < 2\pi$ and 0 < 1
- Jet Trigger: $\not\in$ > 5 GeV over at least one "patch" $(\Delta \eta = 1) \times (\Delta \Phi = 1)$
- Jet reconstruction: Cone algorithm (seed = 1GeV, R = 0.7)
- Luminosity: 3pb¹
- Polarization: 0.4
- $\sqrt{s} = 200$ GeV

Recent report from the competition at CERN...

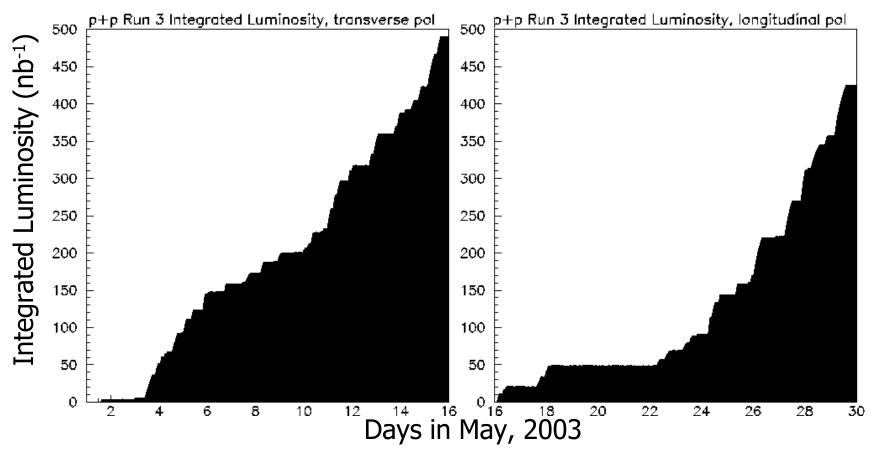

Conclusion and outlook

- •2002 run: 1.2 fb¹ long. + 0.3 fb¹ trans.
- Phase 1 setup fully operational
- Preliminary results for:
 - vector mesons, L polarization, transversity
- Prospects for $\Delta G/G$ in 2004(based on 2002 stat):
- ->d(DG/G)_{stat} ~ 0.15 for high p_T events $Q^2>1GeV^2$ (~ 0.05 for all Q^2)

Claude MARCHAND DIS2003 St. Petersburg

Gluon polarisation

 $\Delta \textit{G}/\textit{G}$ determined for a given fraction of nucleon momentum carried by gluons η


Selection	$\Delta G/G \pm \delta (\Delta G/G)_{stat}$	<η> _{genPGF}
$\Sigma p_T^2 > 2.5$ GeV	-0.07 ± 0.40	0.09
NN >0.26	-0.20±0.29	0.07

K.Kowalik, SINSWarsaw

(SMC) Determination of the gluon polarization.

Xth Workshop on High Energy Spin Physics, Dubna (9/03)

p+p Integrated Luminosity for Run 3 Delivered to STAR IR

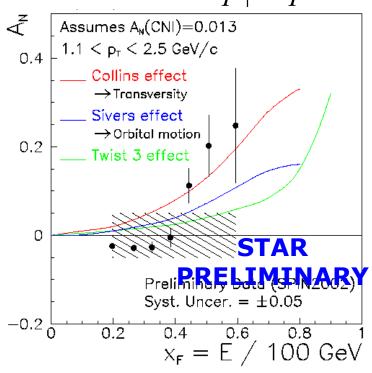

Integrated luminosity from STAR BBC, selected on signal:background > 3

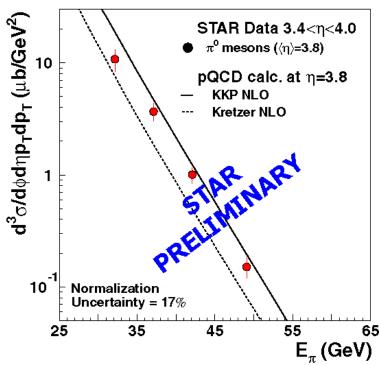
Delivered luminosity limited by 'beam-beam tune shifts' but should be adequate to accomplish physics goals from Run 3.

BROOKHAVE

NATIONAL LABORATORY

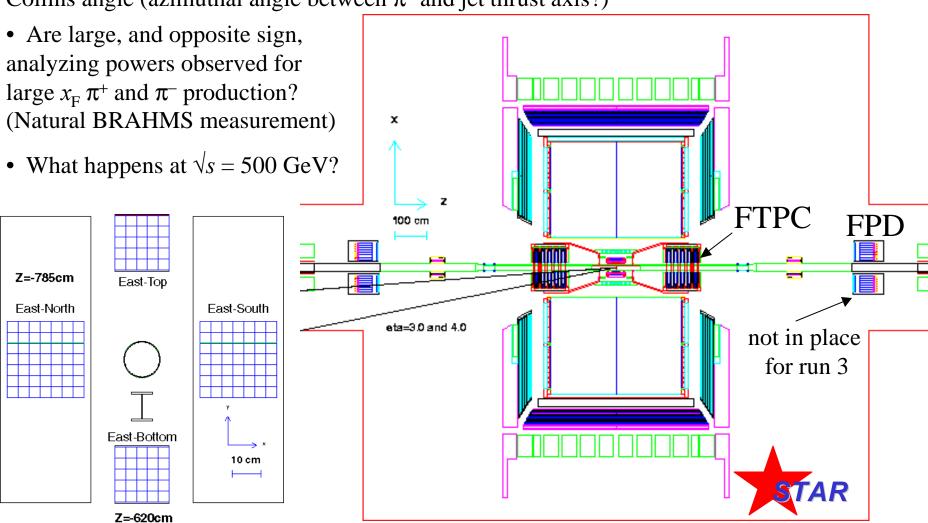
RHIC Polarization at store for Run 3




- RHIC polarization improved by factor of ~2 compared to run 2
- Yellow ring affected by problem with snake magnet (failure of inner helical windings of Yellow ring magnet).

STAR Spin Results: Forward Pion Asymmetry and Cross Section

$$p_{\uparrow} + p \otimes "\pi^0" + X$$
, $\sqrt{s} = 200 \text{ GeV}$



- Measured cross sections consistent with pQCD calculations.
- Large spin effects observed for $\ddot{O}s = 200 \text{ GeV } pp$ collisions, qualitatively consistent with models extrapolating from FNAL E704 data at $\ddot{O}s = 20 \text{ GeV}$.
- \bullet Still have large normalization uncertainty on measured A_N , to be reduced when P_{beam} calibration exp't is done.

S. Vigdor, Spin Physics from STAR

Towards Disentangling the Dynamics...

• Partial reconstruction of the forward jet may be possible for run-3 data by exploiting the overlap of the STAR Forward π^0 Detector (FPD) and Forward Time Projection Chamber (FTPC). Full reconstruction of forward jet will likely require the addition of hadronic calorimetry to supplement FPD. \Rightarrow Do jets have large A_N ? Is the large A_N correlated with the Collins angle (azimuthal angle between π^0 and jet thrust axis?)

